
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19700005842 2018-07-21T09:12:54+00:00Z



I
O

a

J
u

N'70- 1146
IhCCE0f10N NUN.U^pI

7

IrA6[gl

Ih^1C ^ ^;:^ yq T^,A 4R :̂ U 'NNMYR NI

ITNNUI

Icc^u	 -

ICATL40gY1

0

Identification of Systems

by
Bart Childs

RE 2-68
August, 1968

iy 6-R- c/y-CC 6" 0 N 0

R '



4

IDENTIFICATION OF SYSTEMS

by

BART CHILDS

Associate Professor

Department of Mechanical Engineering

Cullen College of Engineering

University of Houston

RE 2 - 68

August, 1968

OF



Identification of Systems

by

Bart Childs

ABSTRACT

This paper is a tutorial discussion of identification

problems. The basic principles of one method of identification

are discussed. The method of quasilinearization has been

developed by Richard Bellman and Robert Kalaba and others.

This method is discussed in some detail with emphasis on

programming strategies. These strategies are intended to

improve the utility of a general quasilinearization program.

Specific strategies are concerned with expansion of convergence

space, superposition of particular solutions, and convergence

criteria.
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Introduction

System identification is that branch of the physi^^-al

sciences in which we answer either of the two closely related

questions:

(1) Given enough data to completely define an existing

system, what is the system (generally, what are the

parameters of the differential equation(s) that

will yield the observed solution)?

Or

(2) Given a desired response of an embryonic system,

what are the proper system parameters that will

satisfy the desired response in a best fit sense

and simultaneously minimize a cost function that

may take on a very general form?

We will restrict ourselves to problems governed by dif-

ferential equations. Those problems governed by algebraic

equations are satisfactorily covered in many elementary texts.
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I
The Simplest Identification Problem

From the introduction, it is obvious that the simplest

nontrivial identification problem will be governed by a linear

first order homogeneous differential equation.

We will then assume

y = ay	 (1)

subject to

Y ( t 1 ) = Y1	
t>0

Y ( t2 ) = Y2	 t2>t110
	 (2)

The solution of the differential equation (2) is

Y = yoeat	
(3)

We now have two unknowns, namely y o and a. To determine these

we write the following set of nonlinear algebraic equations

yl = yoeat1

(4)

Y 2 = Yoeat2

Since this problem is exceedingly simple, we can solve for the

unknowns

ln(yl/Y2)

a = - (t2-t1)

Yo = Y1 e { 11+t 2̂  }

ln(yl/y2)	
(5)

I

s



(8)

x (tI I *--, - VI

x(t2) = x 2

x(t3) = x3

t3>t2>t110

4
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The conclusion can now be reached that, even in the siAplest

form, identification problems are basically nonlinear. The non-

linearity is there in spite of the apparent linearity of the

original differential equations.

We now take a different view, that is, the original dif-

ferential equation is nonlinear. If we rationalize that "a" is

a function of "t" and is an unknown function of "t" which is

governed by a simultaneous differential eugation, then we get

Y

(6)
a = 0

Actually, we have now cast our system into its true perspective.

We have two data points and two simultaneous first order non-

linear differential equations. That is what we will usually

expect.

The differential equation for "a" obviously states that

it doesn't chang with respect to "t".

II

Another simple Identification Problem

Let's take a different look at the simple harmonic motion

problem. The governing differential equation is

X + EX =
	 t,o	 (7)

The necessary boundary conditions will be taken as

X

"w^^IP
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The ordering for t i will be assumed hereafter and is arbitrary.

Denoting Y77 = w we are quickly led to

X
x l = xo cos G)t l ) + w

—o sin (wtl)

K
x 2 = xo cos(wt 2 ) + w-° sin(wt 2 )	 (9)

x 3 = xo cos (wt ) + x sin Wt )

These three nonlinear algebraic equations can be solved by the

use of the Newton Raphson algorithm or some other suitable

algorithm. The three unknowns are obviously xo , xo , and E.

(Or in the form shown (7 = w)).

Another set of boundary conditions is of course possible.

It is possible for boundary conditions to be on the derivative(s)

I

of the functions. Taking the boundary conditions to be

x (t l ) = xl

x (t 2 ) = x2

X (t 3 ) = x3

Then the necessary algebraic equations are

x1 = -xow sin(wt 1 ) + xo cos(wt1)

x2 = -xow sin (wt 2 ) + :so cos (wt2)
.

x 3 = xo cos (wt3 ) + w—° sin (wt3)

(10)

(11)

The degree of difficulty of both these problems is essentially

the same. The solution of either set of nonlinear algebraic

equations requires about the same number of calculations,

strategies, and programming skill.
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In a manner similar to the earlier one, we can also formu-

late this problem as a set of nonlinear differential equations

x + F; x = 0

F; -- 0	
(12)

We will find it convenient later to always write the set of

differential equations as a set of first order equations. Thus,

with the definition stated in the first of the following

equations we have

x = z

Z -- -X
	

(13)

= 0

If we attempt a slight variation of the preceeding problem

and add a damping term, the problem will become seemingly formid-

able in an analytical identification sense. The governing

equation is

X + µX + EX = 0
	

(14)

As you might guess, if the damping and frequency terms are un-

known, we automatically write

X = Z

Z = -VZ - ' X
	

(15)

- 0

u0

The next four topics of discussion will be background to

aid in solving the nonlinear multipoint boundary value problems

we have been formulating.
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III

The Newton Raphson Method

We are now going to discuss a generalization of Newton's

method of tangents and later we will generalize this a bit more.

First, let's review the method of tangents and point out

the properties of the generalized methods that are desirable

and difficult to prove.

Consider the transcendental function cos(x) and assume that

we wish to find its first zero, and that from some obscure

"a priori" knowledge we find that the solution is near one

radian. We expand our equation

f(x)  = cos(x) = 0	 (16)
in a Taylor series about the approximate root x 

(x-x )	 (x-x ) 2
f (x) = f (x a ) + f' (xa ) —T— + f.. (xa )	2--^-- +, , .	 (17)

Neglecting the terms of order (x-x a ) 2 and higher we get the

approximation

f (xa ) + f' (xa ) (x-xa )	 0	 (18)

Then

x-xa = - f (xa ) /f ' (xa)

x = xa + Oxa 	(19)
AXa = - f (xa ) /f' (X a )

The indicated-algorithm is generally written as

xn+l	 xn - f (xn )/f' (xn )	 (20)

I

PP
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The last equation states what is called the Newton Raphson

algorithm for a one dimensional problem.

The algorithm for the zero of the cosine function indicated

does reduce to

xn+l " xn - ( -cot (xn ) ) = xn + Cot(xn )
	

(21)

For the initial condition mentioned, Table I shows the convergence

on the true answer which we already knew to be ff/2.

TABLE I

Newton Raphson Data of Eq. (21)

n
	

Value of xn

0 1.0000

1 1.6421

2 1.5687
3 1.5698

4 1.5706

00 1.5708

The table was constructed by interpolating the values given in

the CRC Handbook.

Notice that in the early iterations that there was an

oscillation about the true answer. However, as the final

solution was approached, the convergence was monotone. R. Kalaba

has proven that often the method gives quadratic and monotone

convergence in the limiting iterations. An approximate inter-

pretation of quadratic convergence is that at each iteration

t
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the number of significant figures is doubled. Of course, that

implies that an extremely high number of significant figures

must be used in the calculations. Because of the "finiteness"

of the tables used, the quadratic convergence property is not

illustrated by the above table. It will also be shown by the

following refinement that the monotone behavior is accidental.

The results of solving the same problem, but having it

done on a digital computer using 16+ significant figures in each

calculation are shown in Table II. Notice that the quadratic

convergence is illustrated by this data. An obvious question is

TABLE II

Improved Newton Raphson Data

n	 I Value of x  Eq. (21 )

0	 11000000000000000
1	 1.642092615934331

2	 1.570675277161251

3	 1.570796326795488

4	 1.570796326794897

5	 1.570796326794897

what is the accuracy of the sine and cosine subroutines? The

final answer is accurate to sixteen significant decimal digits.

Also notice that there is an oscillation about the answer again,.

An interesting variation is to apply the algorithm to a

problem involving complex variables. In approaching the solution

of the biharmonic equation where two dimensional Cartesian co-

ordinates with at least one of the coordinates having finite limits

via Laplace or Fourier transforms, it is often necessary to

6
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know the zeroes of the transcendental.

	

sin (Z) + Z = 0	 (22)

The Newton Raphson algorithm for this problem becomes

Zn+l = Z  - ( sin (Zn) + Z n ) / (1 + cos ( Z 
n ))	 (23)

Obviously the problem now is arithmetical except for the

question of initial guesses. Let's assume that a little bird

flew past and said, "Awk!, the first non zero root is near

4 + i2 and each successive root will be approximately 27

further out the real axis." The name of that little bird is

experience.

Table III is a list of the values of Z that will be

generated in obtaining the first five non zero roots with the

aid of the little bird's information. The improvement of an

answer is stopped whenever the modulus of the last correction

is less than 10-5.

It is obvious that the convergence is rapid for the above

problem. The interpretation of "doubling the number of signi-

ficant figures" with each iteration now raises a question. Which'

significant figures are doubled, if any? A rule that sometimes

applies is, "the largest element's significant figures are doubled".

The example was included for tutorial purposes only. The

most efficient method of solving the above problem includes

asymptotic studies of Eq. (22).

Consider the problem of solving a set of nonlinear algebraic

equations in "N" real unknowns. We will write this as the vector

equation	 } ,	 4.

	

R. (X) = 0	 (24)

where the right hand side is the null vector.

7
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TABLE III

Complex Newton Raphson Data (Eq. (22)

Root Index n Real	 (Zn ) Imag.	 (Z n)

1 0 4. 2.

1 4.2793583E 00 2.2714714

2 4.2143169E 00 2.2488951

3 4.2123884E 00 2.2507277

4 4.2123922E 00 2.2507286

2 0 1.0492392E 01 2.2507286

1 1.0938640E 01 3.6368255

2 1.0801822E 01 3.2135148

3 1.0721907E 01 3.1062368

4 1.073.2570E 01 3.1031115

5 1.0712537E 01 3.1031487

3 0 1.6992537E 01 3.1031487

1 1.7109956E 01 3.6695510

2 1.7077178E 01 3.5574931

3 1.7073389E 01 3.5511021

4 1.7073365E 01 3.5510873

4 0 2.3353365E 01 3.5510873

1 2.3411799E 01 3.9114766

2 2.3398998E 01 3.8601203

3 2.3398356E 01 3.8588097

4 2.3398355E 01 3.8588090

5 0 2.9678355E 01 3.8588090

1 2.9714814E 01 4.1235346

2 2.9708304E 01 4.0941315

3 2.9708120E 01 4.0937050

4 2.9708120E 01 4.0937049

E

PO
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The Newton Raphson approach is to expand the function

about some approximate root Xa.

Then

R(Xa) + a (Xa) {X - Xa } + ..._ R(X) ?	 (25)
aX

Hopefully assuming the questioned equality and neglecting the

t

indicated higher order terms yields

-,	 aR (Xa)	
-1	

-,
X = Xa - {	 -	 }	 R(Xa)

ax
(26)

or in terms of the generally expected subscripts the algorithm

is
-^ -1-► 	 R-^

Xn+l - X	
a R

n - { aX } n n (27)

The derivative quantity is a square matrix of order "N"

and we hope also of rank "N". In general it is and we seldom

need ccnsider the case where it might be singular in the

neighborhood of the solution X.

Let's assume the problem is to solve the equations

x1 + x2 + x3 = 3

x 1 2 + 3x 2 + 4x 3 = 8	 (28)

x2 2 - x3 = 0

Then

rl = xi + x2 + x3 - 3

r2 =x1 2 +3x2 +4x 3 -8	 (29)

2r3 = x2 - x3
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The square matrix or as we will call it, the "Jacobian

matrix" for this problem is

1	 1	 1

Jn	 aR	 = 2x 1 3	 4	 (30)
aX n	 0	 2x2 -1

in

Assuming the null vector for the first approximation Xo,

X1 = X  + ( -Jo )
-1 

Xo	 (31)

Substituting

-1

	

-1 -1 -1	 -3

Xl =	 +	 0 -3 -4	 -8	 (32)

0	 0 +1	 0

The successive solution vectors, as calculated on a 7094, are

shown in Table IV.

TABLE IV

Elements of Solution Vector at Each Iteration

n	 ,	 xl 	 x2	 x3

0 0. 0. 0.

1 .33333333 2.6666667 1.5E-8

2 .72191529 1.4825046 .79558007

3 .94095068 1.0736089 .98544037

4 .99710697 1.0026408 1.0002522

5 .99999356 1.0000044 1.0000020

6 .99999999 1.0000000 1.0000000

OW
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The elements of the residue vector, R, are shown in Table V.

TABLE V

Elements of Residue Vector at Each Iteration

n	 r 
	 r2	

r1.

I

0 -3.

1 1.49E-8

2 1.49E-8

3 7.45E-9

4 0.

5 4.47E-8

6 0.

-8. 0.

1.11E-1 7.11

1.51E-1 1.40

4.80E--2 1.67E-1

3.15E-3 5.04E-3

8.26E-6 6.93E-6

0. 0.

The solution shown above might cause questions as to whether

the convergence is quadratic and monotone. The quadratic question

is needless because the convergence is obviously fast. The

monotone question is meaningful at this time. Monotone conver-

gence in the one dimensional case meant that the solution was

always approached from the same side. In other words AX was

always of the same sign. The generalization of this is that

AXnAXn-1 is positive when monotone and negative when oscillating.
In the limiting iterations, the above was indeed monotone.

Referring to the not quite so simple identification problem,

we will write (see Eq. (9) )

x
xl cos (x3 . 0) + x2 sin (x 3 •0) - 1.00000

3
4.	 x

R(x) =	 x  cos(x3 . 0.5) + x2 sin(x3 .0.5) - 1.35701	 (33)
3

x
x  cos(x 3 . 1.) + x2 sin(x 3 . 1.) - 1.38177

3
P



0 0.5

1 1.00000

2 1.00000

3 1.00000

4 1.00000

5 1.00000

0.5

1.86895

0.92949

1.00862

1.00002

1.00000

0.5

0.98410

0.74143

1.00173

0.99999

1.00000

IP
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The above equations are for the harmonic oscillator having

unit initial conditions and a unit circular frequency (x l X^ ^ 10,

x 2 = xo =	 x = w = ,/= 1) solution for t = O r 0.5, and 1.0

are then used.

Table VI is a list of the vector X starting from an initial

guess; in which each element -S s 50% the final solution.

TABLE V1

Newton Raphson Data

n I x 	 x2	 x3

With nonlinear equations such as these, there is always the

possibility of finding a solution that isn't desired. Using an

initial guess vector of (0, -2,2), the same program that converged

on the nice answers above converged upon the answer (1, -36.7,-36.7).

Let's now consider the solution of a function to be optimized

subject to a set of equality constraints. For the simple first

example we want to consider only functions whose constraints are

linear and the function to be optimized is of a quadratic norm

type. Assuming a two dimensional problem, we write typically

xl+ax2 =s

(yx 2 + 6x2-8) 2 = minimum
	 (34)

1

iv
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By differentiating the function to be minimized with respect

to x l , we get

2y(yx 1 + 8x 2 - H) = 0	 (35)

Thus

x1 + ax  = S
	

i	 X1	 a

or	 =	 (36)

Yx1 + 8x
2 = + e
	

y	 d	 x2	 0

4

_ S8 - a©
X - 6 	 ay ^

X 2 = 
6

which is nice as long as d ^ ay which is the usual case. Before

this simple problem lulls us into trouble, let's point out that

the equation resulting from differentiating with respect to x2

would have been

28 (Yx 1 + 8x 2 	 8) = 0	 (37)

which is equivalent to the one we had.

Considering a problem in three or more dimensions we need

to becareful. Assume a constraint

If we assume a cost function to be minimized, we can take it to

be of the form

M N
E (E ajixi - c i ) 2 = cost
J=2 i

(39)

where M > N - 1.

We supposedly can differentiate the cost function with respect to
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each element of ^ and obtain N - 1 or N linearly independent

equations, appending on M. Because there can be only N linearly

indepen&-nt equations, one might be led to believe that any N - 1

of the equations will give the same solution when coupled with the

constraint equation given above. That isn't so because the right-

hand-sides can be picked at random. Regardless, the best solution

will probably be obtained by an iterative method.

For our purposes we can assume that the above: least squares

type approximation is adequate. The fact that each of the equa-

tions from minimizing the error or cost term involves all the

data points is responsible for this. It should be expected that

any iterative scheme would need this type approximation for a

starting approximation anyway.

IV

Function Space

This section will be very incomplete. It is included for

emphasis of a point that would require great labor to explain

with any significant rigor. Function space is, uh, a very

nebulous abstraction when an attempt is made to visualize it in

the Cartesian frame of mind we are accustomed to. Some dis-

cussion of function space is needed because we are going to

differentiate expressions with respect to functions of variables

and not with respect to variables. Of course, we can always

rationalize that a variable is simply a special case of a function.

The point is though, we are to be differentiating with respect to

continuous dapendent functions of an independent variable. This

I

P
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function space might be thought to have independent, variables

that are the functions of the true independent variable. Another

independent variable might be an iteration index where we are

continuously updating approximations to these functions. Think

about it??? A discussion of function space is in Lanczos' text

entitled Linear Differential Operators.

Some appreciation of function space is necessary for complete

confidence in performing Newton-Raphson-Kantorovich expansions in

function space. We'll call them NRK expansions.

We have written some vector differential equations earlier.

Now, we're going to differentiate these vector equations with

respect to some of the functions within. The equations are like

y =	 (y, t)
	

(40)

The "independent variables" in this function space, that we're

about to expand this equation in, are the elements of the vectors

y and y. Now, both sides of the equation should be expanded

with respect to the totality of y and y. However., the LHS is a

function of y only and the RHS is a function of y only. This

is one reason why we always write the equations in this first

order form. Let's°diverge for a moment.

Recall that:

The derivative of a vector with respect to another vector
is a matrix or maybe it's a second order tensor. If both the
differentiated and differentiating vector are the same, the
matrix is the unit or identity matrix. If they are not the same,
the resulting second order tensor (?) is called the Jacobian
Matrix. The second derivative of a vector with respect to another
vector gives a result that has three subscripts.

t
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Anyway

Y =	 (Y"t)
	 (40)

expanding about the nth iteration where y n and yn are known

in + -Y	 (yn+1
	

yn ) +

,y n

(41)

	

(ynIt) +	 (Yn+l
	 yn) + ...

'y _ n

We have neglected all the higher order terms, the first of which

on the right-hand side cannot be written like

2

a ->2	 (Yn+l	 yn)2	 (42)
ay I n

but must be written as

22	 (Y + - y )	 (y	 - y )	 (4-5)^y2 n	 n 1	 n	 n+1	 n

where the order in which the matrix multiplication or tensor

contraction must be performed is shown by the parentheses.

Recognizing the unit matrix or identity operator resulting

from differentiating y with respect to itself and making a slight

introduction of J  for the Jacobian matrix on the RHS, we easily

write

Yn+l	 Jn Y n+1 + ^n - Jn yn
	 (44)

I
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which with an introduction of obvious nomenclature can be written

(some would say, "simplifies to")

yn+l	 Jn yn+l + Fn
	 (45)

Henceforth, if it is implied that NRK's are relevant, we auto-

matically transform a nasty nonlinear equation

y =	 (y,t)	 (40)

into the simple

yn+l	 j  yn+1 + Fn	 (45)

which is linear with known variable coefficients and a known

forcing function Fn. An obvious problem dealing with the first

assumption for yo will be dealt with later.

V

Numerical Integration of Initial Value Problems

The wheel has suffered through more re-inventions in the

field of numerical integration than any sane person would like

to count. The necessary information presented here is covered

in great detail, often- with so-called "rigor", in no less than

one-hundred-thirty-seven and one-half good books. The reason

it appears here is for the sake of sameness in the names

applied to the methods used. Occasionally there is somebody

from a "culturally and socially deprived area" who may not know

about these techniques.

I assume that we all know about the forward, backward, and

central difference approximations to first derivatives. We have

been writing our differential equations in a first order form

I
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and will continue to dc, so. Because of this, we only need dif-

ference approximations to first derivatives. It is common know-

ledge that the error ter;;l for forward and backward difference

appr.rximati.ons is of order h while the order is h 2 for central

difference expression.i. The following characteristics of these

basic approximations should be recognized:

(1) Forward difference methods O(h) are self-starting

and yield explicit formulae.

(2) Central difference methods have to be started by

other means but do yield explicit formulae.

(3) :ackward difference methods do not yield explicit

formulae for nonlinear differential equations.

The simple forward difference method: have the most

advantages but they also have error problems, relatively. The

recurrence formulae nor a problem like

Y =	 (y, t)	 (40)

is

Yj+1 ' Y^ + h (y j , t^ )	 (46)

From the known initial conditions of this initial value problem,

yo is known and then all other Y  can be calculated. A simple

iterative form that will retain all desirable characteristics of

the forward difference method and gain in accuracy at the expense

of speed, only, is called a predictor corrector method.

The predictor corrector method is easily illustrated by the

following flow diagram

IV
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The PC method above has the advantages of the forward

difference method outlined previously, an error of (h) 2 and

is self-starting. Tt is more expensive than the central dif-

ference method of the same accuracy in computing time. However,

its self-starting characteristic is usually reward enough to

offset that expense.

We will have need to integrate equations like the one

shown above and equations like

y = J (t) y + F (t)	 (47)

This "new type" of equation is simply a linear differential

equation with variable coefficients, namely the matrix J(t) a

and a forcing function F(t). When this is a deterministic

form, there are essentially no unanswered questions if we are

competent enough such that the previous brief discussion on

numerical integration was very boring. However!, we are not

going to be discussing deterministic forms. The matrix J(t)

and the vector F(t) will be functions of discrete data (actually,

they will be formed from the discrete solutions of y =(y,t)).

The best means of integrating these non-deterministic pro-

blems is an open question. The PC method outlined above is

adequate. The values of J(t) and F(t) used will be at the

half-step of the integration step under consideration.

Many refinements can be made to this lacksadasial procedure.

However, these refinements may bc- inconsistent with the accuracy

of th. p problems in mind. For these reasons and others, Runge-

'4i
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Kutta and Adams-Moulton techniques are often not used for the

problems in mind. For problems requiring an extreme accuracy,

there are generally better methods than the RK and AM schemes.

VI

Linear Multipoint Boundary Value Problems

as Initial Value Problems

We are going to discuss an old, old method for solving these

problems. It is frequently used in analytic studies, but, for

some reason it is relatively rare in numerical integration studies.

Consider a linear differential equation of Nth order

y=Jy+F	 (48)

that is subject to at least N boundary conditions. It is elemen-

tary that the solution may be written in terms of a particular

solution plus a linear combination of N linearly independent

homogeneous solutions. The particular solution is the solution of

y (°) = J y (0)	 + F	 (49)

subject to a finite initial condition vector y( 0) (o). The homo-

geneous solutions are solutions of

y (k) = J y (k)	 1< k < N	 (50)

subject to linearly independent f in ;.te initial conditions. For

'

	

	 the initial conditions to be linearly independent, the following

must hold;

' (1)	 ^ (2);(N)det Y(0 ) Y(0 ) 010 Y(0) 74 0	 (51)

t

P
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This is a generalization of what is commonly referred to as the

Wronskian monstrosity.

t

Thus, we can unhesitatingly write

N
y = y (0) + )"a y

k=1	

(k)
k (52)

where the combining coefficients, (a k ), must be determined in

such a manner so as to satisfy the boundary conditions. If there

are N boundary conditions, the a's will be unique. If there are

more than N boundary conditions, the a's will also be dependent

upon the minimization of the norm chosen.

This method has the obvious advantage of accuracy and ef-

ficiency in storage. It often has efficiency in execution time

too. With a little ingenuity, about all that has to be stored

in an (N+1) by (N+2) matrix for the solution of the exactly

determined problem. For a problem with P boundary conditions,

a (P+1) by (N+2) array must be stored for use in calculating

the a's.

The initial conditions of the particular solution should

reflect the maximum knowledge of the true initial conditions.

If the a's are all zero, then the initial conditions used are

the true initial conditions for the problem. However, the

initial conditions of the homogeneous solutions have many

possibilities. An obvious valid choice for the vectors y^o^,

1 < k < N is the columns of an identity matrix. This is a very

simple nonsingular matrix and the columns (or rows) of any non-

singular matrix satisfy the generalized monstrosity given above.
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However, practicality and generality occasionally wreck the simple

plans of men. I've encountered some problems in which it is

necessary to use the following scheme. Use the same vector that

is considered apropos for the particular solutions except multiply

the kth element of the vector by some scalar. This scalar has

few restrictions but something positive, nonunity, and less than

two seems preferable. Generally 1.1 to 1.5 seems very good. A

further exception is that if the kth element is null, use some-

thing other than zero for that element, say one.

Although the one shot procedure described theoretically

works, it can be rendered useless by roundoff error. It is

therefore a good procedure to make it a repetitive procedure

such that we are seemingly trying to find the initial conditions

of the problem. When we have obtained the true initial conditions,

all the a's go to zero or some negligible values.

A further improvement is to superimpose particular solutions

of Eq. (48). To do this, we write

4

4-	 n+l	 ;ky _	Z	 gky ( )
k=1

(53)

where the elements ofy are chosen to satisfy the boundary condi-

tions and the auxiliary condition

n+l

k^l gk	
1
	

(54)

r"his auxiliary condition obviously states that in the superposition,

the forcing functions must sum to be only F(t). This strategy

does add greatly to the control of roundoff error in the super-
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position of solutions. The initial conditions used are those

previously discussed, except, the solution y (° ) is now y(n +1).

If the true initial conditions are used for y(n+1

gn+l - 1
(55)

9  = 0
	

1 < j < n

VII

Quasilinearization

We will now attempt to tie all these things together to

attempt to solve the identification problems mentioned pre-

viously. We wish to solve problems that have nonlinear solu-

tions. The governing differential equations are often linear,

but, the problem is nonlinear because as shown in the simplest

identification problem, the desired answers are not linear combi-

nations of the given data-. We have discussed Newton Raphson

techniques whereby we could solve nonlinear problems by successive

linear steps. We have Gt'so di,scusned one of many methods for

solving linear multipoint boundary value problems.

My guess as to what is quasilinearization is that it is

the totality of the following computational schemes and portions

of computational schemes:

1) Formulate the differential equations in the first

order coupled form as shown earlier.

2) If there are unknown parameters, supplement the

above differential equa4 -.j,-n£ w't :. the null dif-

ferential equations des+ -̂ , 'A ed earlier..

t
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3) If there are more data points than unknowns, select

a norm which will be used as a "goodness of fit"

measure.

4) Do a Newton-Raphson-Kantorovich expansion of the

nonlinear equations to obtain a related set of

linear differential equations.

5) Solve the set of linear variable coefficient dif-

ferential equations subject to the boundary condi-

tions that may be exact and/or best fit. This

solution will generally be obtained as a sequence

of initial value problems to have the highest

reasonable degree of accuracy. The procedure

in this step is repeated until the initial condi-

tions are known for the nonlinear differential

equations such that the solutions generated for

these initial conditions satisfy the given boundary

conditions. If the problem is not exactly determined,

the question arises as to what does satisfy mean.?

This question has to be answered for each problem.

VIII

Applications

The applications of such methods are ubiquitous. The

= M	 essence of engineering design might be said to be, "select a

system governed by the laws of physics and that benefits mankind

with economics as a constraint". Generally in engineering design

I
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the benefit to mankind is established before we get the problem.

Thus, we have only to formulate the laws of physics, which for

simple mechanical problems is simply Newton's late, and pick

the parameters that make it economical. Let's mention a few

examples:

1) For some unknown reason, it is beneficial to mankind

to fly out in space. A space vehicle is attracted by

the earth's gravitational f_eld. There is a potential

function whose gradient is the acceleration due to

gravity. The acceleration due to gravity is not a

constant for a given radial distance from the earth's

center. Identification of the Fourier coefficients

of an eigenfunction expansion of this potential should

be possible via the means we have described.

2) A control system that performs a very simple function

like raising a bulldozer blade is very nonlinear and

might be represented by

x + al x + a 2 x + a3^2x + a4xx 2 = a 5 u(t)

The a's are functions of blade weight, pump and pipe

sizes, oil properties, pressures, etc. It would be

desirable to pick the a's such that a desired system

response is obtained and economy is also achieved.

This could be done if the proper variation of the a's

can be controlled. However, these a's are not yet

known. They can be determined by measuring the responses

I
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of real systems. From these responses, empirical

values of a's can be obtained.

3) Similar problems abound in almost all process plants,

control system.:, and any time variant system.

Ix

Data Structures

The concepts of data structures should be applic-d to most

large programs on digital computers. These concepts involve

knowing the manners in which data are stored internally in digital

computers.

To visualize a very simple example, consider a Newton

Raphson algorithm like

xn-^ 1 - xn - Jn 	 xn

In the calculation procedure, the usual thing to do would be to

have two vectors reserved for the x n and xn+1' 'hen xn+1 is

calculated and convergence has not been achieved, the obvious

thing to do would be to store the xn+1 in the space used for

xno on the last iteration. A frightfully more efficient scheme

would be to interchange the names of xri+1 an,,x xn -

Ideas of this type are easily implemented if one is familiar

with data storage characteristics. Such methods could reduce

f:	 execution times of many quasilinearization programs by up to 30%.

01



aW

t

1

29

X

Extensions

The extensions that can be made to the groundwork we have

laid here are numerous.

:'ypically:

1) Formulating general rules governing cost functions.

2) Inclusion of norms other than least square norms.

All other norms will require iterative solutions

within each iteration. Is this expense worth it?

3) Development of high accuracy integration schemes

for the variable coefficient differential equations.

Problems like the geopotential problem demand it.

4) Use of symbol manipalation compilers to reduce the

effort in formulating the first order and variable

coefficient differential equations.
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